Group matrices for the quaternion and generalized dihedral groups
نویسندگان
چکیده
منابع مشابه
A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملHurwitz Equivalence in Tuples of Generalized Quaternion Groups and Dihedral Groups
Let Q2m be the generalized quaternion group of order 2 m and DN the dihedral group of order 2N . We classify the orbits in Q2m and D n pm (p prime) under the Hurwitz action. 1 The Hurwitz Action Let G be a group. For a, b ∈ G, let a = bab and a = bab. The Hurwitz action on G (n ≥ 2) is an action of the n-string braid group Bn on G . Recall that Bn is given by the presentation Bn = 〈σ1, . . . , ...
متن کاملOn the eigenvalues of Cayley graphs on generalized dihedral groups
Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$. Then the energy of $Gamma$, a concept defined in 1978 by Gutman, is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$. Also the Estrada index of $Gamma$, which is defined in 2000 by Ernesto Estrada, is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$. In this paper, we compute the eigen...
متن کاملImpartial achievement games for generating generalized dihedral groups
We study an impartial game introduced by Anderson and Harary. This game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nimnumbers of this game for generalized dihedral groups, which are of the form Dih(A) = Z2 n A for a finite abelian group A.
متن کاملFuzzy subgroups of the direct product of a generalized quaternion group and a cyclic group of any odd order
Bentea and Tu{a}rnu{a}uceanu~(An. c{S}tiinc{t}. Univ. Al. I.Cuza Iac{s}, Ser. Nouv{a}, Mat., {bf 54(1)} (2008), 209-220)proposed the following problem: Find an explicit formula for thenumber of fuzzy subgroups of a finite hamiltonian group of type$Q_8times mathbb{Z}_n$ where $Q_8$ is the quaternion group oforder $8$ and $n$ is an arbitrary odd integer. In this paper weconsider more general grou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1986
ISSN: 0898-1221
DOI: 10.1016/0898-1221(86)90254-3